
Comput Stat (2017) 32:763–779
DOI 10.1007/s00180-016-0701-3

ORIGINAL PAPER

Computing the noncentral-F distribution
and the power of the F-test with guaranteed accuracy

Ali Baharev1 · Hermann Schichl1 · Endre Rév2

Received: 20 January 2016 / Accepted: 17 November 2016 / Published online: 8 December 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The computations involving the noncentral-F distribution are notoriously
difficult to implement properly in floating-point arithmetic: Catastrophic loss of pre-
cision, floating-point underflow and overflow, drastically increasing computation time
and program hang-ups, and instability due to numerical cancellation have all been
reported. It is therefore recommended that existing statistical packages are cross-
checked, and the present paper proposes a numerical algorithm precisely for this
purpose. To the best of our knowledge, the proposed method is the first method that
can compute the noncentrality parameter of the noncentral-F distribution with guar-
anteed accuracy over awide parameter range that spans the range relevant for practical
applications. Although the proposed method is limited to cases where the the degree
of freedom of the denominator of the F test statistic is even, it does not affect its
usefulness significantly: All of those algorithmic failures and inaccuracies that we
can still reproduce today could have been prevented by simply cross-checking against
the proposed method. Two numerical examples are presented where the intermediate
computations went wrong silently, but the final result of the computations seemed nev-
ertheless plausible, and eventually erroneous results were published. Cross-checking
against the proposed method would have caught the numerical errors in both cases.
The source code of the algorithm is available on GitHub, together with self-contained
command-line executables. These executables can read the data to be cross-checked

The research was funded by the Austrian Science Fund (FWF): P27891-N32. The authors are grateful to
Professor Sándor Kemény and to the anonymous reviewers for reading the draft of this paper and for
making valuable comments and suggestions.

B Ali Baharev
ali.baharev@gmail.com

1 Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

2 Budapest University of Technology and Economics, 1521 Budapest, Pf. 91, Budapest, Hungary

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00180-016-0701-3&domain=pdf
http://orcid.org/0000-0003-4715-9003

764 A. Baharev et al.

from plain text files, making it easy to cross-check any statistical software in an auto-
mated fashion.

Keywords Minimal detectable differences · ANOVA · Noncentrality parameter ·
Self-validating numerical method · Interval arithmetic

1 Introduction

The computational task that this paper deals with, when viewed from a high level of
abstraction, is equivalent to solving univariate equations with guaranteed accuracy.
Since roots of monotone functions are sought, the challenge is not in the root-finding,
but in computing the function values. These intermediate computations are notoriously
difficult to implement properly in floating-point arithmetic:

– Under- and overflow problems were reported by Benton and Krishnamoorthy
(2003), Ding (1997), Helstrom and Ritcey (1985) independently of us;

– we also reveal in Baharev and Kemény 2008 that the algorithms of Norton (1983)
and Lenth (1987) are exposed to over- and underflow issues, and that the Appen-
dix 12 of Lorenzen and Anderson (1993, p. 374) is most likely bogus due to
overflow;

– catastrophic round-off errors were reported by Frick (1990);
– drastically increasing computation time and hang-ups were observed by Chat-
tamvelli (1995), Benton and Krishnamoorthy (2003);

– other noncentral distributions are similarly challenging, see for example Oliveira
and Ferreira (2012).

If some of the intermediate computations suffer catastrophic loss of precision, the
root-finding method can still succeed, and the final result presented to the user may
nevertheless seem plausible. This was the case with the Appendix 12 of Lorenzen
and Anderson (1993, p. 374): The errors in the intermediate computations remained
unnoticed, despite the authors of the book being very diligent.

In theory, one could analyze the floating-point behavior of all the intermediate
computations with pen and paper, and derive mathematically proven bounds on the
final numerical error of the entire algorithmwhen implemented in floating-point arith-
metic. However, as the above listed failures demonstrate, this task is too error-prone
for humans to carry out for a non-trivial numerical algorithm. One way to mitigate
this issue is to automate the numerical error analysis as much as possible: Interval
arithmetic (to be discussed in Sect. 2) is a way to keep track of numerical errors auto-
matically, and to guarantee that floating-point issues such as over- and underflow are
noticed. However, interval arithmetic still requires that a human analyzes the floating-
point behavior of all the basic operations and all the involved mathematical functions
with pen and paper, and derives rigorous error bounds for all the possible floating-
point inputs. It is still a huge win because “only” the smallest building blocks of the
algorithm (basic operations and mathematical functions) have to be analyzed by a
human, but not the entire algorithm as before: The numerical error analysis of algo-
rithms built from the human-verified building blocks happens automatically because
interval arithmetic keeps track of the floating-point errors as the algorithm is executed.

123

Computing the noncentral-F distribution... 765

In short, interval arithmetic reduces the amount of analysis that humans have to carry
out with pen and paper, but it does not eliminate it. With interval arithmetic we essen-
tially give the rest of the error analysis over to the computer, which then has to finish
it as it executes the algorithm. It obviously has a runtime cost; in case of the proposed
method, the runtime cost is negligible.

All of those algorithmic failures and inaccuracies that we can still reproduce today
could have been prevented by simply cross-checking a sparse but sufficiently wide grid
of values against the accurate values provided by the proposedmethod. By ‘sufficiently
wide’ we mean that the grid of values spans the parameter range that is relevant for
practical applications. In case of the noncentral beta distribution,we consider this range
to be roughly the range spanned by Appendix 12 of Lorenzen and Anderson (1993,
p. 374), i.e., shape parameters a ∈ [0.5, 25] and b ∈ [0.5, 500], type I and type II
errors 0.05 and 0.10, respectively. If a numerical algorithm fails or is inaccurate, it
typically happens not at isolated tiny regions of the parameter space but over a wide
and continuous range, and especially at or near the extremes of the parameter ranges.
Therefore, it is not necessary for the grid of cross-checked values to be dense; for cross-
checking, it is sufficient if it has points near the extremes of the parameter ranges. We
give numerical examples in Sect. 4 to support this claim.

The proposed method is limited to cases where the the degree of freedom of the
denominator of the F test statistic is even. Although this is a limitation, it does not
affect the usefulness of the proposed method significantly: All of those algorithmic
failures and inaccuracies that we can still reproduce today could have been prevented
by simply cross-checking against the proposed method.

To the best of our knowledge, the proposed method is the first method that can
compute the noncentrality parameter of the noncentral-F distributionwith guaranteed
accuracy over a wide parameter range that spans the range relevant for practical
applications. In our literature research we found the related self-validating numerical
methods by Wang and Kennedy Wang and Kennedy (1990, 1992, 1994, 1995), out
of which only Wang and Kennedy (1995) is directly relevant. These methods were
published more than 20years ago, and their source code is not publicly available. As
we discuss in Baharev and Kemény (2008), the method in Wang and Kennedy (1995)
is susceptible to over- and underflow: For example, it would over- or underflow due
to the large value of the noncentrality parameter if we tried to compute the top right
entry of Table 4 in contrast to the proposed method that has no difficulties there.

1.1 Outline for the rest of the paper

The paper is structured as follows. The proposedmethod achieves guaranteed accuracy
by applying interval arithmetic. In Sect. 2.1 we give an informal overview of interval
arithmetic with an example, and the reader can compare and contrast it with ordinary
floating-point arithmetic. Interval arithmetic is intentionally treated as a black box
in Sect. 2.1: We only present what it delivers, but we do not discuss how. Then, in
Sect. 2.2 we give a formal overview of how interval arithmetic guarantees rigorous
error bounds. Sect. 3.1 derives the univariate equations that this paper is concerned
with, Eqs. (9) and (11). Section 3.2 discusses how interval arithmetic and the interval

123

766 A. Baharev et al.

Newton method can be applied to solve (9) and (11). The formal description of the
proposed algorithm is presented in Sect. 3.3 with pseudo-code. We finally present
in Sect. 4 two examples from the literature, where the intermediate computations
involving the noncentral-F distribution went wrong silently, but the final result of the
computations seemed nevertheless plausible, and erroneous results were published.
Cross-checking against the proposed method would have caught the numerical errors
in both cases.

2 Interval arithmetic

2.1 Automatic numerical error analysis with interval arithmetic: an example

The goal of this example is to demonstrate that interval arithmetic performs automatic
numerical error analysis. The reader can think of interval arithmetic as a computation-
ally cheap way to get guaranteed lower and upper bounds on the range of a function
over a given domain of the variables. The obtained bounds are not necessarily sharp,
but they are guaranteed to enclose the true range of the function despite the intermedi-
ate computations being carried out in floating-point arithmetic, and potentially suffer
catastrophic loss of precision. Interval arithmetic can safely work with infinity, divi-
sion by zero, etc., and automatically keeps track of the numerical error propagation
throughout the intermediate floating-point computations.

We examine the numerical behavior of the following two functions:

f (n) =
(
1 + 1

n

)n

, g(n) =
(
1 − 1

n

)−n

, n ≥ 2. (1)

It is known, see e.g. Li and Yeh (2013), that f (n) is monotone increasing, g(n) is
monotone decreasing, limn→∞ f (n) = limn→∞g(n) = e, and as a consequence
f (n) < e < g(n). If we carried out the computations in exact arithmetic, we would
get tighter and tighter enclosures for e as n increases. However, we get the erratic
results shown in Table 1 when the computations are carried out with 64 bit floating-
point numbers on a computer. The source code of the example is available on GitHub
atBaharev (2016) if the readerwishes to reproduce the numerical results, or analyze the
implementation. For k = 9, 10, 11, 12, 15, the supposed lower bounding f (n) values
exceed the true value of e, where n = 10k ; these are the rows with negative entries
in the column for e − f (n). For k = 9, 12, 14, 15, 17, the supposed upper bounding
g(n) values fall below the true value of e; these are the rows with negative entries
in the column for g(n) − e. For k = 9, 12, 15, the supposed lower bounding values
exceed even the supposed upper bounding values, meaning that we did not even get an
enclosure. The f (n) values are supposed to be increasing, but for k = 13, 14, 16, 17
it is clearly not the case. Similarly, g(n) is supposed to be monotone decreasing, but
it is violated, e.g., at k = 13, 16.

Since the f (n) and g(n) functions are fairly simple, one could carry out a rigorous
error analysis of these functions with pen and paper, and figure out the accuracy of
the table entries. We will do this automatically with interval arithmetic.

123

Computing the noncentral-F distribution... 767

Table 1 The numerical values of f (n) and g(n) defined in (1) when evaluated with 64 bit floating-point
numbers on a computer where n = 10k

k f (n) g(n) e − f (n) g(n) − e

1 2.59374246 2.86797199 0.12453937 0.14969016

2 2.70481383 2.73199903 0.01346800 0.01371720

3 2.71692393 2.71964222 0.00135790 0.00136039

4 2.71814593 2.71841776 0.00013590 0.00013593

5 2.71826824 2.71829542 0.00001359 0.00001359

6 2.71828047 2.71828319 0.00000136 0.00000136

7 2.71828169 2.71828196 0.00000013 0.00000013

8 2.71828180 2.71828186 0.00000003 0.00000003

9 2.71828205 2.71828175 −0.00000022 −0.00000008

10 2.71828205 2.71828205 −0.00000022 0.00000023

11 2.71828205 2.71828205 −0.00000022 0.00000022

12 2.71852350 2.71822170 −0.00024167 −0.00006013

13 2.71611003 2.71912720 0.00217179 0.00084537

14 2.71611003 2.71611003 0.00217179 −0.00217179

15 3.03503521 2.71611003 −0.31675338 −0.00217179

16 1.00000000 3.03503521 1.71828183 0.31675338

17 1.00000000 1.00000000 1.71828183 −1.71828183

See the text for discussion

Interval arithmetic takes the function f (10k), and the interval for k as input. (The
interval for k is just the point interval [k, k] for each row in Table 1.) The output of the
interval function evaluation is a rigorous enclosure of the range of f (10k) over [k, k].
In exact arithmetic, the range of f (10k) over the point interval [k, k] is obviously just
a single real number, the value f (10k). However, we carry out the computations with
64 bit floating-point numbers on a computer. Interval arithmetic automatically keeps
track of the numerical errors that occur during these computations, and we do not get
a single real number but a pair of floating-point numbers as a result, that is, an interval
enclosing the value of f (10k), the interval [f (10k), f (10k)]. These intervals are given
in Table 2 for k = 1, 2, . . . , 17, togetherwith the similarly computed [g(10k), g(10k)].

The wide intervals in Table 2, for example the rows for k ≥ 15, are a clear sign of
the intermediate computations suffering catastrophic loss of precision; it is guaranteed
that with interval arithmetic we always get informed (through wide intervals) when
this happens. We consider this one of the biggest advantages of this approach.

Despite the serious numerical difficulties for k ≥ 9, the above discussed properties
of f (n) and g(n) are still preserved in some form: (i) f (n) is monotone increasing, and
g(n) is monotone decreasing, (ii) f (n) < e < g(n) holds (unlike in Table 1, there are
no negative entries in the last two columns of Table 2). The fact that these properties are
preserved is not a coincidence either but the guaranteed behavior of interval arithmetic.
However, note that we did not get tighter and tighter enclosures for e as k increased:
The enclosure [f (10k), g(10k)] reaches its minimum width at k = 8, then the width
starts increasing. We cannot blame interval arithmetic for this: Interval arithmetic is

123

768 A. Baharev et al.

Table 2 Rigorous enclosures of f (n) and g(n) defined in (1) where n = 10k

k f (n) f (n) g(n) g(n) e − f (n) g(n) − e

1 2.59374246 2.59374247 2.86797199 2.86797200 0.12453937 0.14969017

2 2.70481382 2.70481383 2.73199902 2.73199903 0.01346800 0.01371720

3 2.71692393 2.71692394 2.71964221 2.71964222 0.00135790 0.00136039

4 2.71814592 2.71814593 2.71841775 2.71841776 0.00013591 0.00013593

5 2.71826823 2.71826824 2.71829541 2.71829543 0.00001360 0.00001360

6 2.71828046 2.71828047 2.71828318 2.71828319 0.00000136 0.00000136

7 2.71828168 2.71828170 2.71828196 2.71828197 0.00000015 0.00000014

8 2.71828179 2.71828186 2.71828182 2.71828186 0.00000004 0.00000003

9 2.71828144 2.71828206 2.71828175 2.71828206 0.00000039 0.00000023

10 2.71827601 2.71828206 2.71827903 2.71828206 0.00000582 0.00000023

11 2.71822169 2.71828206 2.71825187 2.71828206 0.00006014 0.00000023

12 2.71791992 2.71852350 2.71822169 2.71852350 0.00036190 0.00024167

13 2.71611003 2.72214772 2.71611003 2.71912720 0.00217180 0.00084537

14 2.71611003 2.77709435 2.71611003 2.74643293 0.00217180 0.02815110

15 2.43069790 3.03503521 2.71611003 3.03503521 0.28758393 0.31675338

16 0.99999999 9.21143871 0.99999999 3.03503521 1.71828183 0.31675338

17 0.99999999 4.399 × 109 0.99999999 6.632 × 104 1.71828183 6.632 × 104

The enclosures were obtained with interval arithmetic, and f (n) ∈ [f (n), f (n)] and g(n) ∈ [g(n), g(n)]
are guaranteed to hold
See the text for discussion

implemented on the top of 64 bit floating-point numbers, and unless one uses some
extended precision arithmetic, e cannot be enclosed better with this simple approach.
The tightest verified enclosure we got is [2.71828179, 2.71828186] for k = 8; indeed,
the correct value is 2.718281828 . . ., and it is enclosed.

Let us emphasize again that for this simple example one could have derived bounds
on the numerical errors of the entries in Table 1 with pen and paper. The advantage
of interval arithmetic is that the numerical error analysis of the computations hap-
pens fully automatically, and therefore certain kinds of human errors are completely
eliminated.

2.2 A formal overview of interval arithmetic

Interval arithmetic is an extension of real arithmetic defined on the set of real inter-
vals, rather than the set of real numbers. According to a survey paper by Kearfott
(1996), a form of interval arithmetic perhaps first appeared in Burkill (1924). Modern
interval arithmetic was originally invented independently in the late 1950s by several
researchers; including Warmus (1956), Sunaga (1958) and finally Moore (1959), who
set firm foundations for the field in his many publications, including the foundational
book Moore (1966). Since then, interval arithmetic is being used to rigorously solve
numerical problems.

123

Computing the noncentral-F distribution... 769

Let IR be the set of all real intervals, and take x, y ∈ IR. We set x := inf x
and x := sup x, such that x = [x, x]. Furthermore, the width of x is defined as
wid(x) := x − x , the radius of x as rad(x) := 1

2 wid(x), the magnitude of x as
|x| := max(x, x), and the mignitude of x as 〈x〉 := min{|x | | x ∈ y}. For x bounded
we set the midpoint of x as x̌ := 1

2 (x + x). We define the elementary operations for
interval arithmetic by the rule x � y = �{x � y | x ∈ x, y ∈ y},∀� ∈ {+,−,×,÷,ˆ},
where�S denotes the smallest interval containing the set S. (The symbol ‘�’ is a box,
and it refers to the tightest interval hull, also called as box hull.) Thus, the ranges of
the five elementary interval arithmetic operations are exactly the ranges of their real-
valued counterparts. Although this rule characterizes these operations mathematically,
the usefulness of interval arithmetic is due to the operational definitions based on
interval bounds Hickey et al. (2001). For example, let x = [x, x] and y = [y, y], it
can be easily proved that

x + y = [x + y, x + y],
x − y = [x − y, x − y],
x × y = [min{x y, x y, x y, x y},max{x y, x y, x y, x y}],
x ÷ y = x × 1/y if 0 /∈ y, where 1/y = [1/y, 1/y],

xy = [min{x y, x y, x y, x y},max{x y, x y, x y, x y}], y > 0, x ≥ 0.

In addition, for a function ϕ : R → R and an interval x we define

ϕ(x) := �{ϕ(x) | x ∈ x}.

Moreover, if a function f composed of these elementary arithmetic operations and
elementary functions ϕ ∈ {sin, cos, exp, log, . . .}, i.e., factorable function, is given,
bounds on the range of f can be obtained by replacing the real arithmetic operations
and the real functions by their corresponding interval arithmetic counterparts.

The finite nature of computers precludes an exact representation of the reals. In
practice, the real set, R, is approximated by a finite set F̄ = F ∪ {−∞,+∞}, where
F is the set of floating-point numbers. The set of real intervals is then approximated
by the set I of intervals with bounds in F̄. The power of interval arithmetic lies in
its implementation on computers. In particular, outwardly rounded interval arithmetic
allows rigorous enclosures for the ranges of operations and functions. This makes a
qualitative difference in scientific computations, since the results are now intervals
in which the exact result is guaranteed to lie. Interval arithmetic can be carried out
for virtually every expression that can be evaluated with floating-point arithmetic.
However, two important points have to be considered: Interval arithmetic is only
subdistributive, so expressions that are equivalent in real arithmetic differ in interval
arithmetic, giving different amounts of overestimation (the amount by which the real
range of the function over an interval and the result computed by interval arithmetic
differ). Therefore, computations should be arranged so that overestimation of ranges is
minimized. Readers are referred to Alefeld and Herzberger (1983), Neumaier (1990),
Hickey et al. (2001), Jaulin et al. (2001) for more details on basic interval methods.

123

770 A. Baharev et al.

Let f : x → R be continuously differentiable, and assume the existence of x̂ ∈ x
with f (x̂) = 0, and let x̃ ∈ x. Then by the mean value theorem we get

f (x̂) = 0 = f (x̃) + f ′(ξ)(x̂ − x̃),

for some ξ ∈ x. Therefore,

x̂ = x̃ − f (x̃)

f ′(ξ)
.

Now let f′ be an interval extension of f ′ and f be an interval extension of f , i.e. a
specific expression for computing an enclosure for the range of f over a given input
interval x. Then by the properties of interval arithmetic we get

x̂ ∈ x̃ − f(x̃)

f′(x)
=: N (f, f′; x, x̃).

The operator N is called univariate interval Newton operator. Using this operator we
can define the interval Newton iteration as

x(k+1) = x(k) ∩ N (f, f′; x(k), x̌ (k)), (2)

startingwithx(0) = x. This iteration has the properties thatwheneverx(k) = ∅ for some
k, then x does not contain a zero of f . Otherwise x̂ ∈ x(k) for all k, and wid(x(k+1)) =
O(wid(x(k))2) locally under mild assumptions on f and x(0). Furthermore, if for any
k we find that x(k+1) ⊆ int(x(k)), i.e., that the interval Newton operator maps the box
x(k) into its interior, then x(k) contains a unique zero of f .

The interval Newton operator requires an interval extension f′ of the derivative of f .
For every factorable function f such an extension can be constructed using algorithmic
differentiation techniques, e.g., see Berz et al. (1996), Griewank and Corliss (1991),
Griewank and Walther (2008). For univariate functions the most efficient approach is
via the algebra of differential numbers D1 := R × R, equipped with the following
basic operations: Let d f := (f, f ′), dg := (g, g′) ∈ D1, and ϕ : R → R. Define

d f ± dg := (f ± g, f ′ ± g′),
d f · dg := (f · g, f ′ · g + f · g′),
d f/dg := (f/g, (f ′ · g − f · g′)/g2), g �= 0,

d f dg := (f g, f g · (g′ · log(f) + g · f ′/ f)), f > 0,

ϕ(d f) := (ϕ(f), ϕ′(f) · f ′).

(3)

The set of real numbers is embedded in D1 by r �→ (r, 0).
If f̃ (x) is an expression representing f using arithmetic operations and elementary

functions, we can use f̃ to calculate (y, y′) = f̃ ((x, 1)) on D1 by replacing the
operations and elementary functions in f̃ by their counterparts on D1, and then y′ =
f ′(x).

123

Computing the noncentral-F distribution... 771

This approach can be generalized to compute an interval extension f′ of f ′ by defin-
ing the algebra of interval differential numbers ID1 := IR× IR and introducing again
the operations (3) on ID1 now using interval arithmetic operations in the components
of the interval differential numbers. Using this algebra and an expression f̃ for f , we
get by computing (y, y′) = f̃ ((x, 1)) an enclosure y′ ⊇ f ′(x) and thereby an interval
extension f′ of f ′.

3 The proposed method

3.1 Derivation of the formulas

The F test statistic used in the analysis of variance (ANOVA) problems follows the
non-central F distribution when the null hypothesis is false, i.e., F0 = Fnc(ν1, ν2, λ),
where ν1 and ν2 are the degrees of freedom of the nominator and the denominator,
respectively, of the F test statistic;λ is the non-centrality parameter. This non-centrality
parameter is related to the size of effects. The probability of the Type II error β (not
detecting an effect) is

β = P [F0 ≤ Fα(ν1, ν2)] = P [Fnc(ν1, ν2, λ) ≤ Fα(ν1, ν2)] , (4)

where α is the significance level of the test. The power calculation consists of cal-
culating the power (Power = 1 − β) for certain effect sizes. When it is used in the
reversed way, the power is fixed (e.g. Power = 0.9), and the size of the effect is cal-
culated; this is considered as effect of detectable size, see Johnson and Leone (1977,
p. 170) and Lorenzen and Anderson (1993). Another application where the noncen-
tral F-distribution arises is in coverages of Clopper-Pearson confidence intervals for
binomial proportions with misspecified parameter p (Puza and O’Neill 2006a, b).

The cdf F(w, ν1, ν2, λ) of the noncentral F-distribution with ν1, ν2 degrees of
freedom and noncentrality parameter λ, and the cdf Ix (a, b; λ) of the noncentral beta
distribution with shape parameters a and b and noncentrality parameter λ are related
as follows:

F(w, ν1, ν2, λ) = Ix (a, b; λ), (5)

where a = ν1
2 , b = ν2

2 , and x = ν1w
ν1w+ν2

. We will work with the noncentral beta
distribution from now on.

The incomplete noncentral beta function ratio Ix (a, b; λ) for 0 ≤ x ≤ 1, a >

0, b > 0, λ ≥ 0 is defined as

Ix (a, b; λ) =
∞∑
i=0

e−(λ/2)(λ/2)i

i ! Ix (a + i, b), (6)

where Ix (a, b) is the usual incomplete beta function ratio,

Ix (a, b) = Γ (a + b)

Γ (a)Γ (b)

x∫
0

ta−1(1 − t)b−1dt, (7)

123

772 A. Baharev et al.

and Γ (a) is the (complete) gamma function

Γ (a) =
∞∫
0

ta−1e−tdt, a > 0, (8)

see for example Johnson et al. (1995).
Equation (6) cannot be used directly for actual numerical computations. The pro-

posed method uses the the closed formula

Ix (a, b) = xa
(
1 +

b−1∑
n=1

(
n∏

m=1

a + m − 1

m

)
(1 − x)n

)
(9)

by Singh and Relyea (1992) (misprint corrected by Chattamvelli (1995)) for the com-
putation of the cdf of the central beta distribution, and the closed formula

Ix (a, b; λ) = e−(λ/2)(1−x)
b−1∑
i=0

((λ/2)(1 − x))i

i ! Ix (a + i, b − i) (10)

by Sibuya (1967) (and later published by Johnson et al. (1995)) for the cdf of the
noncentral beta distribution. The shape parameter bmust be integer. It is very interest-
ing that the evaluation of (10), using (9), is possible in finitely many steps, requiring
only the four arithmetic operations, the power function, and the exponential function;
the formulas do not depend on any function for computing statistical distributions, or
other special functions.

Detectable differences for a specified type II error probability β are determined by
the noncentrality parameterλ forwhich the cdf value of the noncentral beta distribution
equals β

Ix1−α (a, b; λ) = β, (11)

where x1−α is the upper α quantile of the central beta distribution with shape para-
meters a = ν1/2 and b = ν2/2; α denotes the allowed type I error probability. When
minimal detectable differences are sought, one solves (11) for λ, given a, b, α and β.

3.2 Overview of the proposed method

To summarize Sect. 3.1, one can compute minimal detectable differences for a spec-
ified type II error probability β in the traditional setting as follows. Given the shape
parameters a = ν1/2 and b = ν2/2, and the allowed type I error probability α, the
upper α quantile x1−α of the central beta distribution is computed first by solving
Ix (a, b) = 1 − α for x , using (9) and the traditional Newton method. Then, (11) is
solved for the noncentrality parameter λ with the traditional Newton method, given
x1−α, a, b, and β.

The proposed method follows these steps of the traditional setting but all the com-
putations are carried out with interval arithmetic instead of ordinary floating-point

123

Computing the noncentral-F distribution... 773

arithmetic, and the interval Newton method is used instead of the traditional New-
ton method. As a consequence, there are notable differences. The traditional Newton
method has two outcomes: It either reaches convergence or it does not. In contrast,
the interval Newton method has three possible outcomes as we discussed in Sect. 2.2
formally; these outcomes are enumerated below informally as cases a, b, and c.

(a) All solutions are rigorously enclosed, and each enclosure contains a unique zero.
The result is the list of these enclosures. (In our case, there can be at most one
zero, i.e., the list has at most one element.)

(b) It is proved with mathematical rigor that the function cannot have any zeros in the
initial interval.

(c) There is at least one enclosure among the resulting enclosures of zeros which may
contain a zero but verification of existence and/or uniqueness of a zero in that
particular enclosure failed.

The primary use case of the proposed method is cross-checking correctness of
existing statistical software. The user first computes x1−α and λ with the statistical
software to be checked, given a = ν1/2, b = ν2/2,α, and β. The x1−α and λ values are
floating-point numbers, or in other words, zero-width intervals. The initial intervals for
the interval Newtonmethod are then constructed by inflating these point intervals x1−α

and λ such that they are centered around x1−α and λ, respectively, but they have non-
zero widths. (In this context, inflation refers to the width of the interval: The width of
the point interval x1−α is increased from zero to a strictly positive value.) If these initial
intervals contain the true values, and the interval Newton method succeeds in proving
it (case a), then the algorithm under test is at least as accurate as the radius of the initial
intervals in that studied case. Analogously, if the initial intervals do not contain the the-
oretically correct value, and the interval Newton method reliably proves that (case b),
then the accuracy of the algorithm under test is less than the radius of the initial inter-
vals. The very rare but unfortunate case c, when reliable conclusion cannot be drawn
and further investigation may be needed, can usually be remedied by simply changing
(increasing) the radius of the initial intervals. We have not experienced case c when
computing in the parameter range relevant for practical applications, e.g., when com-
puting Tables 4 and 5; we only experienced case c when insane parameters were set.

The proposed method also works with, for example, [0, 1] as initial interval for
x1−α . In other words, the proposed method works even in the complete absence of an
approximate value for x1−α , however, this is not the anticipated use case.

3.3 Formal description of the proposed algorithm

Input. The input data of the proposed algorithm are x1−α and λ, that the user wants
to cross-check. In the anticipated use case, x1−α and λ come from an existing
statistical software whose correctness is being checked.

Step 1. The initial intervals x0 and λ0 are obtained from the inputs x1−α and λ by
inflating them as follows:

x0 = [
(1 − εx)x1−α, (1 + εx)x1−α

]
, and λ0 = [(1 − ελ)λ, (1 + ελ)λ] ,

(12)

123

774 A. Baharev et al.

where the inflation parameters εx and ελ are sufficiently small user-defined
real numbers, for example 10−6.

Step 2. A narrow interval containing the theoretically correct value of x1−α is com-
puted with the interval Newton method, using (9). If the interval Newton
method proves that x0 is guaranteed not to have a solution, or the verifi-
cation of a unique solution in x0 fails, exit with the corresponding error
message.

Step 3. Equation (11) is solved for λ with the interval Newton method, using (10)
and (9). The possible outcomes are: A rigorous enclosure of the true value
of λ is obtained, or λ0 is proved not to contain the correct value, or the
verification of a unique solution in λ0 fails. The algorithm finishes here.

Output. The rigorous enclosures for x1−α and λ are printed if the interval Newton
iteration is successful in both Step 2 and Step 3, or the corresponding error
message if any of these steps fails.

We implemented this algorithm in C++, the source code is available on GitHub
under Baharev (2016).

3.4 Implementation details

As for the implementation details, the above algorithm is implemented in C++ using
the C-XSC module nlfzero. C-XSC is available from http://www.xsc.de, and it is
documented in the book of Hammer et al. (1995). C-XSC implements the interval
Newton method in one variable using automatic differentiation. No higher precision
internal data format is used. All computations are done using the IEEE double format
(64 bit). Evaluation of (9) and (10) could be significantly speeded up since it involves
several redundant operations. For example, it is possible to reduce the number of
switches between rounding modes considering that a > 0, b > 0, and 0 ≤ x ≤ 1
always hold. However, (9) and (10) are used directly, and no efforts were made to
decrease the computation time because we found it to be satisfactory.

The parameters are assumed to lie in the domain that is relevant for practical appli-
cations, roughly: a ≤ 25, b ≤ 500, and 0.01 ≤ α, β ≤ 0.99; the inflation parameters
are also assumed to be sane, say < 10−4. Violating these assumptions may cause
performance degradation and the algorithm may start reporting verification failures,
but incorrect results will never appear in the output.

4 Numerical results

As we claimed in the introduction, all of those algorithmic failures and inaccuracies
that we can still reproduce today could have been prevented by simply cross-checking
against the proposed method; we now give two such examples. In both examples,
the intermediate computations suffer significant loss of precision, but the final results
presented to the user seem nevertheless plausible, making these kinds of numerical
errors particularly harmful. A by-product of the first example is that the algorithm
of Baharev and Kemény (2008), implemented on the top of the built-in functions

123

http://www.xsc.de

Computing the noncentral-F distribution... 775

of R, is proved to be accurate for 6 significant digits in the investigated cases with
mathematical certainty.

The entire source code is available on GitHub at Baharev (2016). The computa-
tions have been carried out with the following hardware and software configuration.
Processor: Intel(R) Core(TM) i5-3320M CPU at 2.60GHz; operating system: Ubuntu
14.04.3 LTS with 3.13.0-67-generic kernel; compiler: gcc 4.8.4, compiler optimiza-
tion flag: -O3; C-XSC 2.5.4 configuration left on the default values given by the install
script.

4.1 Example 1: minimal detectable differences for general ANOVA models

Appendix 12 of Lorenzen and Anderson (1993, p. 374) tabulates the minimal
detectable differences for general ANOVA models as a function of ν1 and ν2, with
the type I and type II error probabilities fixed at α = 0.05 and β = 0.10, respec-
tively. All entries in Appendix 12 seem plausible; there is no obvious sign that some
of the entries have no correct significant digits (for example that entry in Appendix 12
that corresponds to the top right entry of Table 4 of the present paper). The entries
of Appendix 12 are most likely bogus due to floating-point overflow (Baharev and
Kemény 2008).

The error could have been caught by simply cross-checking against the proposed
method. The corrected form ofAppendix 12 of Lorenzen andAnderson (1993, p. 374),
i.e., Table 3 of Baharev and Kemény (2008), fully spans the parameter range that is
relevant for practical applications. This table (except rows for which b is not integer,
i.e., b = 0.5, 1.5, 2.5, 3.5) is recomputed with the proposed method, and it is given as
Table 4. The input values of x0.95 and λ are computed by the algorithm of Baharev and
Kemény (2008), implemented in R R Development Core Team (2015) and available
as the package fpow; the inflation parameter values εx and ελ are both set to 10−6.

Table 3 contains the solution of Ix (a, b) = 1 − α for x , given a, b and α = 0.05.
Table 4 contains the solution of (11), where the verified x0.95 is obtained from the
previous step, that is, from Table 3. The overall computation required less than 9
seconds. The output of the proposed algorithm is x0.95 verified up to 12 significant
digits, and λ verified up to 10 significant digits. (Only 6 digits are shown in the Tables 3
and 4.) The algorithm of Baharev and Kemény (2008), implemented on the top of the
built-in functions of R, is also proved to be accurate for 6 significant digits in the
investigated cases with mathematical certainty.

4.2 Example 2: comparing the accuracy of numerical algorithms

One of the goals of Table 1 of Chattamvelli and Shanmugam (1997) was to illustrate
that their algorithm gives more accurate results than Frick’s algorithm (Frick 1990) for
large values of λ. We reproduced selected rows of their table in Table 5, and extended
it with an extra column showing the correct values up to 7 significant digits. This
extra column was computed with the proposed method. The correct values (correct
up to 7 significant digits) enabled us to give the number of correct significant digits
in parentheses after each table entry. Table 5 proves, with mathematical rigor, that the

123

776 A. Baharev et al.

Ta
bl
e
3

T
he

up
pe
r
α

=
0.
05

qu
an
til
es
,t
he

so
lu
tio

n
of

I x
(a

,
b)

=
1

−
α
fo
r
x

b
a 0.
5

1
1.
5

2
2.
5

3
5

10
25

1
9.
02

50
0e
-0
1

9.
50

00
0e
-0
1

9.
66

38
3e
-0
1

9.
74

67
9e
-0
1

9.
79

69
2e
-0
1

9.
83

04
8e
-0
1

9.
89

79
4e
-0
1

9.
94

88
4e
-0
1

9.
97

95
0e
-0
1

2
6.
58

37
2e
-0
1

7.
76

39
3e
-0
1

8.
31

75
0e
-0
1

8.
64

65
0e
-0
1

8.
86

62
2e
-0
1

9.
02

38
9e
-0
1

9.
37

15
0e
-0
1

9.
66

68
1e
-0
1

9.
86

15
8e
-0
1

3
4.
99

47
4e
-0
1

6.
31

59
7e
-0
1

7.
04

01
3e
-0
1

7.
51

39
5e
-0
1

7.
85

23
0e
-0
1

8.
10

74
5e
-0
1

8.
71

24
4e
-0
1

9.
28

13
0e
-0
1

9.
69

02
2e
-0
1

4
3.
99

29
4e
-0
1

5.
27

12
9e
-0
1

6.
03

93
2e
-0
1

6.
57

40
8e
-0
1

6.
97

39
9e
-0
1

7.
28

66
2e
-0
1

8.
07

09
7e
-0
1

8.
87

33
4e
-0
1

9.
49

69
2e
-0
1

5
3.
31

75
6e
-0
1

4.
50

72
0e
-0
1

5.
26

62
3e
-0
1

5.
81

80
3e
-0
1

6.
24

47
2e
-0
1

6.
58

73
9e
-0
1

7.
48

63
2e
-0
1

8.
47

28
2e
-0
1

9.
29

50
6e
-0
1

6
2.
83

46
3e
-0
1

3.
93

03
8e
-0
1

4.
65

97
6e
-0
1

5.
20

70
3e
-0
1

5.
64

10
2e
-0
1

5.
99

68
9e
-0
1

6.
96

46
3e
-0
1

8.
09

13
5e
-0
1

9.
09

12
6e
-0
1

7
2.
47

31
6e
-0
1

3.
48

16
4e
-0
1

4.
17

43
5e
-0
1

4.
70

67
9e
-0
1

5.
13

74
1e
-0
1

5.
49

64
2e
-0
1

6.
50

18
8e
-0
1

7.
73

30
8e
-0
1

8.
88

91
1e
-0
1

8
2.
19

28
4e
-0
1

3.
12

34
4e
-0
1

3.
77

83
4e
-0
1

4.
29

13
6e
-0
1

4.
71

28
5e
-0
1

5.
06

90
1e
-0
1

6.
09

13
8e
-0
1

7.
39

88
6e
-0
1

8.
69

06
7e
-0
1

9
1.
96

92
6e
-0
1

2.
83

12
9e
-0
1

3.
44

97
2e
-0
1

3.
94

16
3e
-0
1

4.
35

10
4e
-0
1

4.
70

08
7e
-0
1

5.
72

61
9e
-0
1

7.
08

79
9e
-0
1

8.
49

71
2e
-0
1

10
1.
78

68
7e
-0
1

2.
58

86
6e
-0
1

3.
17

29
4e
-0
1

3.
64

35
9e
-0
1

4.
03

95
4e
-0
1

4.
38

10
5e
-0
1

5.
40

00
5e
-0
1

6.
79

91
3e
-0
1

8.
30

91
2e
-0
1

11
1.
63

52
8e
-0
1

2.
38

40
4e
-0
1

2.
93

68
0e
-0
1

3.
38

68
1e
-0
1

3.
76

88
3e
-0
1

4.
10

09
9e
-0
1

5.
10

75
2e
-0
1

6.
53

06
9e
-0
1

8.
12

70
1e
-0
1

12
1.
50

73
3e
-0
1

2.
20

92
2e
-0
1

2.
73

30
8e
-0
1

3.
16

34
0e
-0
1

3.
53

15
7e
-0
1

3.
85

39
0e
-0
1

4.
84

39
6e
-0
1

6.
28

09
9e
-0
1

7.
95

09
4e
-0
1

13
1.
39

79
1e
-0
1

2.
05

81
7e
-0
1

2.
55

55
7e
-0
1

2.
96

73
4e
-0
1

3.
32

20
2e
-0
1

3.
63

44
2e
-0
1

4.
60

54
9e
-0
1

6.
04

84
4e
-0
1

7.
78

09
1e
-0
1

14
1.
30

32
6e
-0
1

1.
92

63
6e
-0
1

2.
39

95
8e
-0
1

2.
79

39
6e
-0
1

3.
13

56
8e
-0
1

3.
43

82
5e
-0
1

4.
38

88
3e
-0
1

5.
83

15
5e
-0
1

7.
61

68
3e
-0
1

15
1.
22

05
9e
-0
1

1.
81

03
6e
-0
1

2.
26

14
3e
-0
1

2.
63

95
7e
-0
1

2.
96

89
3e
-0
1

3.
26

19
3e
-0
1

4.
19

12
0e
-0
1

5.
62

89
3e
-0
1

7.
45

85
7e
-0
1

20
9.
26

56
7e
-0
2

1.
39

10
8e
-0
1

1.
75

53
4e
-0
1

2.
06

72
5e
-0
1

2.
34

41
1e
-0
1

2.
59

46
7e
-0
1

3.
41

80
7e
-0
1

4.
79

01
2e
-0
1

6.
74

79
7e
-0
1

30
6.
25

17
5e
-0
2

9.
50

33
9e
-0
2

1.
21

19
1e
-0
1

1.
44

09
0e
-0
1

1.
64

82
6e
-0
1

1.
83

94
3e
-0
1

2.
49

30
5e
-0
1

3.
68

15
3e
-0
1

5.
65

06
2e
-0
1

40
4.
71

69
3e
-0
2

7.
21

57
5e
-0
2

9.
25

21
5e
-0
2

1.
10

55
3e
-0
1

1.
27

05
3e
-0
1

1.
42

41
4e
-0
1

1.
96

07
8e
-0
1

2.
98

63
4e
-0
1

4.
85

21
1e
-0
1

50
3.
78

70
8e
-0
2

5.
81

55
1e
-0
2

7.
48

16
0e
-0
2

8.
96

71
5e
-0
2

1.
03

35
3e
-0
1

1.
16

16
7e
-0
1

1.
61

54
5e
-0
1

2.
51

09
7e
-0
1

4.
24

83
0e
-0
1

10
0

1.
90

71
1e
-0
2

2.
95

13
0e
-0
2

3.
82

26
9e
-0
2

4.
61

07
3e
-0
2

5.
34

61
4e
-0
2

6.
04

36
5e
-0
2

8.
58

51
4e
-0
2

1.
39

66
0e
-0
1

2.
61

25
9e
-0
1

25
0

7.
66

11
0e
-0
3

1.
19

11
4e
-0
2

1.
54

92
6e
-0
2

1.
87

59
5e
-0
2

2.
18

33
1e
-0
2

2.
47

71
2e
-0
2

3.
56

73
1e
-0
2

5.
98

53
6e
-0
2

1.
20

97
2e
-0
1

50
0

3.
83

60
0e
-0
3

5.
97

35
5e
-0
3

7.
78

04
0e
-0
3

9.
43

34
9e
-0
3

1.
09

93
1e
-0
2

1.
24

87
9e
-0
2

1.
80

69
0e
-0
2

3.
06

51
9e
-0
2

6.
38

10
8e
-0
2

A
ll
gi
ve
n
di
gi
ts
ar
e
ve
ri
fie
d
w
ith

th
e
la
st
di
gi
tr
ou
nd
ed

to
th
e
ne
ar
es
t

123

Computing the noncentral-F distribution... 777

Ta
bl
e
4

T
he

no
nc
en
tr
al
ity

pa
ra
m
et
er

λ
,t
he

so
lu
tio

n
to

E
q.

(1
1)

b
a 0.
5

1
1.
5

2
2.
5

3
5

10
25

1
4.
61

80
3e
+
01

9.
00

51
7e
+
01

1.
33

93
6e
+
02

1.
77

82
3e
+
02

2.
21

71
2e
+
02

2.
65

60
1e
+
02

4.
41

16
1e
+
02

8.
80

06
5e
+
02

2.
19

67
8e
+
03

2
1.
93

23
6e
+
01

3.
04

22
0e
+
01

4.
08

99
7e
+
01

5.
11

55
4e
+
01

6.
13

04
8e
+
01

7.
13

94
8e
+
01

1.
11

49
0e
+
02

2.
11

20
6e
+
02

5.
09

74
6e
+
02

3
1.
53

08
6e
+
01

2.
20

96
6e
+
01

2.
82

38
3e
+
01

3.
41

35
0e
+
01

3.
99

08
5e
+
01

4.
56

10
4e
+
01

6.
80

82
4e
+
01

1.
23

55
6e
+
02

2.
89

08
7e
+
02

4
1.
37

82
2e
+
01

1.
90

17
9e
+
01

2.
36

05
4e
+
01

2.
79

37
8e
+
01

3.
21

38
0e
+
01

3.
62

59
0e
+
01

5.
23

58
7e
+
01

9.
17

57
3e
+
01

2.
08

80
5e
+
02

5
1.
29

87
0e
+
01

1.
74

38
8e
+
01

2.
12

43
4e
+
01

2.
47

87
4e
+
01

2.
81

92
9e
+
01

3.
15

14
0e
+
01

4.
43

77
3e
+
01

7.
55

65
2e
+
01

1.
67

74
5e
+
02

6
1.
25

00
9e
+
01

1.
64

83
0e
+
01

1.
98

19
6e
+
01

2.
28

91
7e
+
01

2.
58

21
0e
+
01

2.
86

62
1e
+
01

3.
95

76
0e
+
01

6.
57

90
2e
+
01

1.
42

83
2e
+
02

7
1.
21

73
6e
+
01

1.
58

43
7e
+
01

1.
88

70
0e
+
01

2.
16

29
0e
+
01

2.
42

42
0e
+
01

2.
67

63
7e
+
01

3.
63

77
1e
+
01

5.
92

54
6e
+
01

1.
26

08
7e
+
02

8
1.
19

38
3e
+
01

1.
53

86
5e
+
01

1.
81

92
4e
+
01

2.
07

28
9e
+
01

2.
31

16
8e
+
01

2.
54

11
0e
+
01

3.
40

95
4e
+
01

5.
45

77
4e
+
01

1.
14

04
2e
+
02

9
1.
17

61
1e
+
01

1.
50

43
6e
+
01

1.
76

84
9e
+
01

2.
00

55
2e
+
01

2.
22

75
0e
+
01

2.
43

99
0e
+
01

3.
23

86
9e
+
01

5.
10

64
0e
+
01

1.
04

94
7e
+
02

10
1.
16

22
8e
+
01

1.
47

76
9e
+
01

1.
72

90
7e
+
01

1.
95

32
4e
+
01

2.
16

21
7e
+
01

2.
36

13
7e
+
01

3.
10

60
0e
+
01

4.
83

27
6e
+
01

9.
78

28
5e
+
01

11
1.
15

12
0e
+
01

1.
45

63
6e
+
01

1.
69

75
9e
+
01

1.
91

14
9e
+
01

2.
11

00
2e
+
01

2.
29

86
8e
+
01

3.
00

00
0e
+
01

4.
61

35
6e
+
01

9.
20

99
1e
+
01

12
1.
14

21
2e
+
01

1.
43

89
2e
+
01

1.
67

18
6e
+
01

1.
87

73
9e
+
01

2.
06

74
3e
+
01

2.
24

74
8e
+
01

2.
91

33
6e
+
01

4.
43

39
8e
+
01

8.
73

84
2e
+
01

13
1.
13

45
4e
+
01

1.
42

44
0e
+
01

1.
65

04
5e
+
01

1.
84

90
2e
+
01

2.
03

20
0e
+
01

2.
20

48
9e
+
01

2.
84

12
5e
+
01

4.
28

41
6e
+
01

8.
34

33
4e
+
01

14
1.
12

81
2e
+
01

1.
41

21
1e
+
01

1.
63

23
6e
+
01

1.
82

50
5e
+
01

2.
00

20
7e
+
01

2.
16

89
1e
+
01

2.
78

02
8e
+
01

4.
15

72
3e
+
01

8.
00

72
7e
+
01

15
1.
12

26
2e
+
01

1.
40

15
8e
+
01

1.
61

68
6e
+
01

1.
80

45
3e
+
01

1.
97

64
5e
+
01

2.
13

81
0e
+
01

2.
72

80
7e
+
01

4.
04

83
2e
+
01

7.
71

77
6e
+
01

20
1.
10

37
5e
+
01

1.
36

56
2e
+
01

1.
56

39
7e
+
01

1.
73

45
3e
+
01

1.
88

90
5e
+
01

2.
03

30
4e
+
01

2.
54

97
6e
+
01

3.
67

46
7e
+
01

6.
71

49
0e
+
01

30
1.
08

55
0e
+
01

1.
33

09
6e
+
01

1.
51

31
1e
+
01

1.
66

72
6e
+
01

1.
80

51
0e
+
01

1.
93

21
0e
+
01

2.
37

80
7e
+
01

3.
31

18
8e
+
01

5.
72

17
6e
+
01

40
1.
07

66
0e
+
01

1.
31

41
1e
+
01

1.
48

84
2e
+
01

1.
63

46
2e
+
01

1.
76

43
7e
+
01

1.
88

31
2e
+
01

2.
29

46
1e
+
01

3.
13

41
4e
+
01

5.
22

52
7e
+
01

50
1.
07

13
2e
+
01

1.
30

41
5e
+
01

1.
47

38
3e
+
01

1.
61

53
5e
+
01

1.
74

03
2e
+
01

1.
85

41
9e
+
01

2.
24

52
6e
+
01

3.
02

85
6e
+
01

4.
92

62
7e
+
01

10
0

1.
06

09
3e
+
01

1.
28

45
6e
+
01

1.
44

51
6e
+
01

1.
57

74
8e
+
01

1.
69

30
8e
+
01

1.
79

73
7e
+
01

2.
14

81
9e
+
01

2.
81

96
0e
+
01

4.
32

29
7e
+
01

25
0

1.
05

47
9e
+
01

1.
27

30
1e
+
01

1.
42

82
8e
+
01

1.
55

51
9e
+
01

1.
66

52
7e
+
01

1.
76

39
2e
+
01

2.
09

09
5e
+
01

2.
69

54
9e
+
01

3.
95

54
0e
+
01

50
0

1.
05

27
6e
+
01

1.
26

91
9e
+
01

1.
42

27
0e
+
01

1.
54

78
3e
+
01

1.
65

60
8e
+
01

1.
75

28
8e
+
01

2.
07

20
3e
+
01

2.
65

43
2e
+
01

3.
83

15
4e
+
01

Pr
ob

ab
ili
ty

of
th
e
ty
pe

I
an
d
ty
pe

II
er
ro
rs
ar
e
0.
05

an
d
0.
10

re
sp
ec
tiv

el
y

A
ll
gi
ve
n
di
gi
ts
ar
e
ve
ri
fie
d
w
ith

th
e
la
st
di
gi
tr
ou
nd
ed

to
th
e
ne
ar
es
t

123

778 A. Baharev et al.

Table 5 The cdf of the non-central beta random variable

a b λ x Frick (1990) Chattamvelli and
Shanmugam (1997)

Correct

5 5 54 0.8640 0.4563026 (7) 0.4563021 (5) 0.4563026

5 5 170 0.9560 0.6022421 (6) 0.6022353 (5) 0.6022422

10 10 54 0.8686 0.9187790 (6) 0.9187770 (5) 0.9187791

20 20 54 0.8787 0.9998677 (7) 0.9998655 (5) 0.9998677

20 20 250 0.9220 0.9641169 (5) 0.9641113 (4) 0.9641191

Except the last column, the values are taken from Table 1 of Chattamvelli and Shanmugam (1997); the last
column with the correct values is computed with the proposed method. The number of correct significant
digits is given in parentheses

algorithm of Chattamvelli and Shanmugam (1997) is actually slightly less accurate
than Frick’s algorithm (Frick 1990) for those large values of λ that are shown in
Table 5. Since the precise details of the computations are not given in Chattamvelli
and Shanmugam (1997), we cannot tell where the algorithm in Chattamvelli and
Shanmugam (1997) suffers from a loss of precision.

Acknowledgements Open access funding provided by Austrian Science Fund (FWF).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, New York
Baharev A (2016) Rigorous enclosures of minimal detectable differences for general anova models. https://

github.com/baharev/mindiffver
Baharev A, Kemény S (2008) On the computation of the noncentral F and noncentral beta distribution. Stat

Comput 18:333–340
Benton D, Krishnamoorthy K (2003) Computing discrete mixtures of continuous distributions: noncentral

chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient.
Comput Stat Data Anal 43(2):249–267

Berz M, Bischof C, Corliss G, Griewank A (1996) Computational differentiation: techniques, applications,
and tools. SIAM, Philadelphia

Burkill JC (1924) Functions of intervals. Proc Lond Math Soc 22:375–446
Chattamvelli R (1995) On the doubly noncentral F distribution. Comput Stat Data Anal 20(5):481–489
Chattamvelli R, Shanmugam F (1997) Algorithm AS 310: computing the non-central beta distribution

function. J R Stat Soc: Ser C (Appl Stat) 46(1):146–156
Ding CG (1997) On using Newton’s method for computing the noncentrality parameter of the noncentral

F distribution. Commun Stat-Simul Comput 26(1):259–268
Frick H (1990) AS R84. A remark on Algorithm AS 226, computing non-central beta probabilities. Appl

Stat 39(2):311–312
Griewank A, Corliss GF (1991) Automatic differentiation of algorithms. SIAM Publications, Philadelphia
Griewank A (2008) Evaluating derivatives: principles and techniques of algorithmic differentiation. SIAM,

Philadelphia
Hammer R, Hocks M, Kulisch U, Ratz D (1995) C++ toolbox for verified computing I, basic numerical

problems. Springer-Verlag, Berlin

123

http://creativecommons.org/licenses/by/4.0/
https://github.com/baharev/mindiffver
https://github.com/baharev/mindiffver

Computing the noncentral-F distribution... 779

Helstrom CW, Ritcey JA (1985) Evaluation of the noncentral F-distribution by numerical contour integra-
tion. SIAM J Sci Stat Comput 6(3):505–514

Hickey TJ, Ju Q, Van Emden MH (2001) Interval arithmetic: from principles to implementation. J ACM
(JACM) 48(5):1038–1068

Jaulin L, Kieffer M, Didrit O, Walter E (2001) Applied interval analysis, 1st edn. Springer, Berlin
Johnson NL, Leone FC (1977) Statistics and experimental design: in engineering and the physical science,

2nd edn. John Wiley & Sons, New York
Johnson NL, Kotz S, Balakrishnan N (1995) Continuous univariate distributions, vol 2, 2nd edn. JohnWiley

& Sons Inc, New York
Kearfott BR (1996) Interval computations: introduction, uses, and resources. Euromath Bull 2(1):95–112
Lenth RV (1987) Algorithm AS 226: computing noncentral beta probabilities. J R Stat Soc Ser C (Appl

Stat) 36(2):241–244
Li YC, Yeh CC (2013) Some equivalent forms of Bernoulli’s inequality: a survey. Appl Math 4:1070–1093
Lorenzen TJ, Anderson VL (1993) Design of experiments: a no-name approach. Marcel Dekker Inc, New

York
MooreRE (1959)Automatic error analysis in digital computation. Technical Report LMSD-84821,Missiles

and space division, Lockheed Aircraft Corporation, Sunnyvale, California, USA
Moore RE (1966) Interval analysis. Prentice Hall, Englewood Cliffs
Neumaier A (1990) Interval methods for systems of equations. Cambridge University Press, Cambridge
Norton V (1983) A simple algorithm for computing the non-central F distribution. Appl Stat 32(1):84–85
Oliveira IRC, Ferreira DF (2012) Computing the noncentral gamma distribution, its inverse and the non-

centrality parameter. Comput Stat 28(4):1663–1680
Puza B, O’Neill T (2006a) Generalised clopperpearson confidence intervals for the binomial proportion. J

Stat Comput Simul 76(6):489–508. doi:10.1080/10629360500107527
Puza B, O’Neill T (2006b) Interval estimation via tail functions. The Canadian Journal of Statistics / La

Revue Canadienne de Statistique 34(2):299–310, http://www.jstor.org/stable/20445202
RDevelopmentCore Team (2015)R:ALanguage andEnvironment for Statistical Computing. RFoundation

for Statistical Computing, Vienna, Austria, http://www.R-project.org, ISBN 3-900051-07-0
Sibuya M (1967) On the noncentral beta distribution function, unpublished manuscript, the equation can

be found in the book of Johnson, Kotz, and Balakrishnan (1995), p. 485, Eq. (30.12)
Singh KP, Relyea GE (1992) Computation of noncentral F probabilities: A computer program. Comput

Stat Data Anal 13(1):95–102, the misprint on p. 97 was corrected by Chattamvelli (1995)
Sunaga T (1958) Theory of an interval algebra and its applications to numerical analysis. RAAG Memoirs

2:29–46
Wang M, Kennedy WJ (1990) Comparison of algorithms for bivariate normal probability over a rectangle

based on self-validated results from interval analysis. J Stat Comput Simul 37(1–2):13–25
Wang M, Kennedy WJ (1992) A numerical method for accurately approximating multivariate normal

probabilities. Comput Stat Data Anal 13(2):197–210
Wang MC, Kennedy WJ (1994) Self-validating computations of probabilities for selected central and non-

central univariate probability functions. J Am Stat Assoc 89(427):878–887
Wang MC, Kennedy WJ (1995) A self-validating numerical method for computation of central and non-

central F probabilities and percentiles. Stat Comput 5(2):155–163
Warmus M (1956) Caculus of Approximations. Bulletin de l’Académie Polonaise des Sciences IV(5):253–

259

123

http://dx.doi.org/10.1080/10629360500107527
http://www.jstor.org/stable/20445202
http://www.R-project.org

	Computing the noncentral-F distribution and the power of the F-test with guaranteed accuracy
	Abstract
	1 Introduction
	1.1 Outline for the rest of the paper

	2 Interval arithmetic
	2.1 Automatic numerical error analysis with interval arithmetic: an example
	2.2 A formal overview of interval arithmetic

	3 The proposed method
	3.1 Derivation of the formulas
	3.2 Overview of the proposed method
	3.3 Formal description of the proposed algorithm
	3.4 Implementation details

	4 Numerical results
	4.1 Example 1: minimal detectable differences for general ANOVA models
	4.2 Example 2: comparing the accuracy of numerical algorithms

	Acknowledgements
	References

